Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Emerg Microbes Infect ; 13(1): 2337673, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38572517

RESUMO

Influenza A viruses (IAVs) pose a persistent potential threat to human health because of the spillover from avian and swine infections. Extensive surveillance was performed in 12 cities of Guangxi, China, during 2018 and 2023. A total of 2540 samples (including 2353 nasal swabs and 187 lung tissues) were collected from 18 pig farms with outbreaks of respiratory disease. From these, 192 IAV-positive samples and 19 genomic sequences were obtained. We found that the H1 and H3 swine influenza A viruses (swIAVs) of multiple lineages and genotypes have continued to co-circulate during that time in this region. Genomic analysis revealed the Eurasian avian-like H1N1 swIAVs (G4) still remained predominant in pig populations. Strikingly, the novel multiple H3N2 genotypes were found to have been generated through the repeated introduction of the early H3N2 North American triple reassortant viruses (TR H3N2 lineage) that emerged in USA and Canada in 1998 and 2005, respectively. Notably, when the matrix gene segment derived from the H9N2 avian influenza virus was introduced into endemic swIAVs, this produced a novel quadruple reassortant H1N2 swIAV that could pose a potential risk for zoonotic infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Doenças dos Suínos , Suínos , Animais , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , China/epidemiologia , Doenças dos Suínos/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/veterinária , Influenza Humana/epidemiologia , Vírus Reordenados/genética , Filogenia
2.
J Virol Methods ; 327: 114932, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582378

RESUMO

Senecavirus A (SVA) is a newly identified picornavirus associated with swine vesicular disease and neonatal mortality. The development of an SVA incorporating an exogenous reporter gene provides a powerful tool for viral research. In this study, we successfully constructed a recombinant SVA expressing Gaussia Luciferase (Gluc), termed rSVA-Gluc. The growth kinetics of rSVA-Gluc in BHK-21 cells were found to be comparable to those of the parental virus, and Gluc activity paralleled the virus growth curve. Genetic analysis revealed stable inheritance of the inserted reporter protein genes for at least six generations. We evaluated the utility of rSVA-Gluc in antiviral drug screening, and the results highlighted its potential as an effective tool for such purposes against SVA. DATA AVAILABILITY STATEMENT: The data that support the findings of this study are available on request from the corresponding author.

3.
Arch Virol ; 169(2): 22, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193974

RESUMO

African swine fever (ASF) is an infectious disease caused by ASF virus (ASFV), which is characterized by high infectivity, rapid onset of disease, and a high mortality rate. Outbreaks of ASFV have caused great economic losses to the global pig industry, and there is a need to develop safe and effective vaccines. In this study, two recombinant pseudorabies virus (PRV) strains, rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L, expressing the EP364R and B119L protein, respectively, of ASFV, were constructed by homologous recombination technology. Western blotting and immunofluorescence analysis showed that these foreign proteins were expressed in cells infected with the recombinant strains. The strains showed good genetic stability and proliferative characteristics for 20 passages in BHK-21 cells. Both of these strains were immunogenic in mice, inducing the production of specific antibodies against the expressed ASFV proteins while providing protection against lethal challenge with PRV. Thus, the recombinant strains rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L could be used as candidate vaccines for both ASFV and PRV. In addition, our study identifies two potential target genes for the development of safe and efficient ASFV vaccines, provides a reference for the construction of bivalent ASFV and PRV vaccines, and demonstrates the feasibility of developing a live ASFV vector vaccine.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Herpesvirus Suídeo 1 , Animais , Camundongos , Suínos , Vírus da Febre Suína Africana/genética , Herpesvirus Suídeo 1/genética , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas , Imunidade
4.
Arch Virol ; 169(2): 25, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38214826

RESUMO

Senecavirus A (SVA) is an emerging virus that causes vesicular disease in pigs. Construction of a full-length SVA cDNA clone is crucial for understanding its replication and pathogenesis. Here, we successfully constructed a CMV-promoter-driven infectious cDNA clone of the SVA isolate SVA/GX/CH/2018, which we named rSVA GX01. Sequence comparison between the pSVA GX01 and the parental isolate (SVA/GX/CH/2018) revealed three single-nucleotide differences. Four-week-old piglets were experimentally infected with either the parental virus or the cloned virus. The results showed that the cloned rSVA GX01 displayed weak pathogenicity in 4-week-old pigs compared to the parental virus SVA CH-GX-01-2018. The infectious clone of SVA will serve as a valuable tool for studying the viral replication cycle and for functional analysis of the viral genome.


Assuntos
Infecções por Picornaviridae , Picornaviridae , Doenças dos Suínos , Animais , Suínos , DNA Complementar/genética , Células Clonais/patologia
5.
Virology ; 591: 109990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224661

RESUMO

Getah virus (GETV) is an emerging mosquito-borne alphavirus that can infect horses, pigs and other animals. Given the public health threat posed by GETV, research on its pathogenesis, diagnosis and prevention is urgently needed. In the current study, prokaryotic expression systems were used to express the capsid protein of GETV. This protein was then used to immunize BALB/c mice in order to generate monoclonal antibodies (mAbs). Subsequently, hybridoma cells secreting a mAb (2B11-4) against the capsid protein were obtained using the hybridoma technique. A B cell linear epitope, 18-PAYRPWR-24, located at the capsid protein's N-terminal region was identified using western blotting analysis with the produced mAb, 2B11-4. Sequence alignment indicated that this epitope was highly conserved in group III (GIII) strains of GETV, but varied among the other genotypes. Western blotting showed that mAb 2B11-4 could discriminate Group III GETVs from other genotypes. This study describes the preparation of a mAb against the GETV capsid protein and the identification of the specific localization of B-cell epitopes, and will contribute towards a better understanding of the biological importance of the GETV capsid protein. It will also pave the way for developing immunological detection methods and genotype diagnosis for GETVs.


Assuntos
Alphavirus , Culicidae , Camundongos , Animais , Suínos , Cavalos , Alphavirus/genética , Proteínas do Capsídeo/genética , Anticorpos Monoclonais , Epitopos de Linfócito B/genética
6.
Virology ; 589: 109927, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951087

RESUMO

The reassortment between avian H9N2 and Eurasian avian-like (EA) H1N1 viruses may have potentially changed from avian-to-mammals adaptation. This study generated 20 reassortant viruses with the introduction of H1N1/2009 internal genes from EA H1N1 virus into H9N2 virus. 12 of these recovered the replication capability both in the lungs and turbinate samples. 10 of 12 obtained PA gene segments from the ribonucleoprotein (RNP) complexes of the EA H1N1 virus, and 3 exhibited extreme virulence. Specially, the combination of PB2, PA and NP genes could overcome the species-specific restriction in human cells. Analysis of the polymerase activities found that introduction of the PA gene resulted in increased polymerase activity. These findings indicated that RNP complexes from EA H1N1 virus could confer an adaptation advantage and high compatibility to avian H9N2 virus. This raises new concerns for public health due to the possible coexistence of H9N2 and EA H1N1 viruses in dogs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H9N2 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Suínos , Cães , Humanos , Camundongos , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus Reordenados/genética , Virulência/genética , Aves , Ribonucleoproteínas/genética , Infecções por Orthomyxoviridae/veterinária , Replicação Viral , Mamíferos
7.
J Virol Methods ; 325: 114873, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38142820

RESUMO

Enterovirus G (EV-G) has recently been shown to affect weight gain and cause neurological symptoms in piglets. However, the serological investigation of EV-G is limited. In this study, we developed a novel serological detection method based on the structural protein, VP1 of EV-G. The intra-assay and inter-assay coefficient variations were 3.2-8.9% and 2.6-8.0%, respectively. There was no cross-reaction of the VP1-based enzyme-linked immunosorbent assay (ELISA) with antisera against the other known porcine viruses. In addition, a comparison was made with other methods including the developed indirect ELISAs based on VP2 and VP3 proteins and western blot (WB) analysis, which demonstrated the reliability of the novel method. Using the VP1-based ELISA, we carried out the first seroepidemiological survey of EV-G in China by testing 1041 serum samples collected from different pig farms in Guangxi from 2019 to 2021. Our results showed that 68.78% of the serum samples and 100% of the pig farms were positive for EV-G, with a relatively high incidence of seropositivity in pigs of different ages. This was specifically evident in fattening pigs and sows, which may suggest that the piglets have experienced an infection with EV-G during their growth process. Our data provide the first serological evidence of EV-G infections in pigs from China and reveal the widespread presence of EV-G infections in Guangxi, China.


Assuntos
Infecções por Enterovirus , Enterovirus , Animais , Suínos , Feminino , Reprodutibilidade dos Testes , China/epidemiologia , Infecções por Enterovirus/diagnóstico , Infecções por Enterovirus/epidemiologia , Infecções por Enterovirus/veterinária , Ensaio de Imunoadsorção Enzimática/métodos
8.
Arch Virol ; 168(12): 285, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938380

RESUMO

Pseudorabies virus (PRV) is an important pathogen that can cause harm to the pig population. Since 2011, there have been a number of large-scale outbreaks of pseudorabies on Chinese farms where animals had been vaccinated with the Bartha-K61 vaccine. In order to understand the epidemiological trend and genetic variations of PRV in Guangxi province, China, 819 tissue samples were collected from swine farms where PRV infection was suspected from 2013 to 2019, and these were tested for infectious wild strains of PRV. The results showed a positive rate of PRV in Guangxi province of 28.21% (231/819). Thirty-six wild-type PRV strains were successfully isolated from PRV-positive tissue samples, and a genetic evolutionary analysis was performed based on the gB, gC, gD, gE, and TK genes. Thirty of the PRV strains were found to be closely related to the Chinese variant strains HeN1-China-2012 and HLJ8-China-2013. In addition, five PRV strains were genetically related to Chinese classical strains, and one isolate was a recombinant of the PRV variant and the vaccine strain Bartha-K61. Amino acid sequence analysis showed that all 36 PRV strains had characteristic variant sites in the amino acid sequences of the gB, gC, gD, and gE proteins. Pathogenicity analysis showed that, compared to classical PRV strains, the PRV variant strains were more pathogenic in mice and had a lower LD50. Taken together, our results show that wild-type PRV infections are common on pig farms in Guangxi province of China and that the dominant prevalent strains were those of the PRV variants. The PRV variant strains also had increased pathogenicity in mice. Our data will provide a useful reference for understanding the prevalence and genetic evolution of PRV in China.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Vacinas , Animais , Camundongos , Suínos , Herpesvirus Suídeo 1/genética , China/epidemiologia , Epidemiologia Molecular , Pseudorraiva/epidemiologia
9.
Virology ; 588: 109899, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37862828

RESUMO

Porcine enterovirus G (EV-G) is endogenous to most pig farming countries worldwide. Reports that a papain-like protease (PLP) gene has been naturally inserted into the 2C/3A junction region of the EV-G genome, has increased the potential public health threats from this virus. We constructed a full-length infectious cDNA clone of EV-G, CH/17GXQZ/2017, in order to determine the packaging capacity at the 2C/3A insertion site. Subsequently, recombinants viruses containing the coding tags, GFP, iLOV and His at the 2C/3A junction region, were synthesized. The infectious virus was successfully rescued only with the insertion of the His-tag, which displayed similar virological and molecular properties to its parental strain. This study determined the packaging capacity of the 2C/3A insertion site, and it provides a practical tool for studying the functions and pathogenic mechanisms of EV-G in pigs.


Assuntos
Enterovirus Suínos , Suínos , Animais , Enterovirus Suínos/genética , Sequência de Bases , Genoma Viral , Genômica
10.
Microbiol Spectr ; 11(3): e0070123, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140381

RESUMO

The interferon (IFN) system is an extremely powerful antiviral response in animal cells. The subsequent effects caused by porcine astrovirus type 1 (PAstV1) IFN activation are important for the host's response to viral infections. Here, we show that this virus, which causes mild diarrhea, growth retardation, and damage of the villi of the small intestinal mucosa in piglets, induces an IFN response upon infection of PK-15 cells. Although IFN-ß mRNA was detected within infected cells, this response usually occurs during the middle stages of infection, after genome replication has taken place. Treatment of PAstV1-infected cells with the interferon regulatory factor 3 (IRF3) inhibitor BX795 decreased IFN-ß expression, whereas the nuclear factor kappa light chain enhancer of activated B cells (NF-κB) inhibitor BAY11-7082 did not. These findings indicate that PAstV induced the production of IFN-ß via IRF3-mediated rather than NF-κB-mediated signaling pathways in PK-15 cells. Moreover, PAstV1 increased the protein expression levels of retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) in PK-15 cells. The knockdown of RIG-I and MDA5 decreased the expression levels of IFN-ß and the viral loads and increased the infectivity of PAstV1. In conclusion, PAstV1 induced the production of IFN-ß via the RIG-I and MDA5 signaling pathways, and the IFN-ß produced during PAstV1 infection inhibited viral replication. These results will help provide new evidence that PAstV1-induced IFNs may protect against PAstV replication and pathogenesis. IMPORTANCE Astroviruses (AstVs) are widespread and can infect multiple species. Porcine astroviruses produce mainly gastroenteritis and neurological diseases in pigs. However, astrovirus-host interactions are less well studied, particularly with respect to their antagonism of IFN. Here, we report that PAstV1 acts via IRF3 transcription pathway activation of IFN-ß. In addition, the knockdown of RIG-I and MDA5 attenuated the production of IFN-ß induced by PAstV1 in PK-15 cells and increased efficient viral replication in vitro. We believe that these findings will help us to better understand the mechanism of how AstVs affect the host IFN response.


Assuntos
NF-kappa B , Transdução de Sinais , Animais , Suínos , Helicase IFIH1 Induzida por Interferon/metabolismo , NF-kappa B/metabolismo , Interferons
11.
Microbiol Spectr ; 11(3): e0453522, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37199637

RESUMO

Since the outbreak caused by a porcine epidemic diarrhea virus (PEDV) variant in 2010, the current epidemic of PEDV genotype 2 (G2) has caused huge economic losses to the pig industry in China. In order to better understand the biological characteristics and pathogenicity of the current PEDV field strains, 12 PEDV isolates were collected and plaque purified during 2017 to 2018 in Guangxi, China. The neutralizing epitopes of the spike proteins and the ORF3 proteins were analyzed to evaluate genetic variations, and they were compared with the reported G2a and G2b strains. Phylogenetic analysis of the S protein showed that the 12 isolates were clustered into the G2 subgroup (with 5 and 7 strains in G2a and G2b, respectively) and that they shared 97.4 to 99.9% amino acid identities. Among them, one of the G2a strains, CH/GXNN-1/2018, which had a titer of 106.15 PFU/mL, was selected for pathogenicity analysis. Although piglets infected with the CH/GXNN-1/2018 strain exhibited severe clinical signs and the highest level of virus shedding within 24 h postinfection (hpi), recovery and decreased virus shedding were seen after 48 hpi, and no piglets died during the whole process. Thus, the CH/GXNN-1/2018 strain had low virulence in suckling piglets. Virus neutralizing antibody analysis showed that the CH/GXNN-1/2018 strain induced cross-protection against both homologous G2a and heterologous G2b PEDV strains as early as 72 hpi. These results are of great significance for understanding PEDV in Guangxi, China, and they provide a promising naturally occurring low-virulent vaccine candidate for further study. IMPORTANCE The current epidemic of porcine epidemic diarrhea virus (PEDV) G2 has caused huge economic losses to the pig industry. Evaluation for low virulence of the PEDV strains of subgroup G2a would be useful for the future development of effective vaccines. In this study, 12 field strains of PEDV were obtained successfully, and they were characterized from Guangxi, China. The neutralizing epitopes of the spike proteins and the ORF3 proteins were analyzed to evaluate antigenic variations. One of the G2a strains, CH/GXNN-1/2018, was selected for pathogenicity analysis, and it showed that the CH/GXNN-1/2018 strain had low virulence in suckling piglets. These results provide a promising naturally occurring low-virulent vaccine candidate for further study.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Suínos , Vírus da Diarreia Epidêmica Suína/genética , Virulência , Glicoproteína da Espícula de Coronavírus/genética , Infecções por Coronavirus/veterinária , Filogenia , China/epidemiologia , Doenças dos Suínos/epidemiologia , Epitopos , Diarreia
12.
Vet Microbiol ; 281: 109742, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37075664

RESUMO

Getah virus (GETV), is an often neglected and re-emerging mosquito-borne RNA virus. GETV can cause illness accompanied with high fever, rash, incapacitating arthralgia and chronic arthritis or encephalitic disease in affected animals. Currently, there is no specific treatment or vaccine against GETV infection. In this study, we developed three recombinant viruses by inserting different reporter protein genes between the Cap and pE2 genes. The reporter viruses exhibited high replication capacity similar to the parental virus. The rGECiLOV and rGECGFP viruses were genetically stable within at least ten rounds of passages in BHK-21 cells. We confirmed that the reporter virus, rGECGFP, facilitated the antiviral assays against GETV by testing it with the known inhibitor, ribavirin. It was also found that the compound, doxycycline, showed an inhibitory effect on GETV replication. In addition, rGECGFP was found to be an authentic mimic of the parental virus infection in 3-day-old mice, but with milder pathogenicity. The reporter viruses will contribute to the assessment of viral replication and proliferation, tracking and elucidating of alphavirus-host interactions. In addition, they will help in the screening of potential antiviral compounds.


Assuntos
Alphavirus , Culicidae , Animais , Camundongos , Alphavirus/genética , Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/veterinária , Replicação Viral
13.
Animals (Basel) ; 13(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37048471

RESUMO

Since 2010, porcine epidemic diarrhea virus (PEDV) has swept across China and spread throughout the country, causing huge economic losses. In this study, 673 diarrhea samples from 143 pig farms in Guangxi during 2017-2022 were collected and detected for PEDV. Ninety-eight strains were selected for S1 gene analyses and these strains were classified into four subgroups (G1b, G2a, G2b and G2c), accounting for 1.02 (1/98), 75.51 (74/98), 16.33 (16/98) and 7.14% (7/98) of the total, respectively. Importantly, an increased number of strains in the G2c subgroup was found from 2019 onwards. Bayesian analysis revealed that Guigang may have been the epicenter of PEDVs in Guangxi. In addition, Guigang was identified as the primary hub from which PEDVs spread via two routes, namely Guigang-Wuzhou and Guigang-Laibin. Moreover, several coinfections of novel PEDV variants bearing large deletions in the partial S1 protein and PEDVs possessing an intact partial S1 protein were found in pigs. Further recombination analyses indicated that two of the strains, 18-GXNN-6 and 19-GXBH-2, originated from intra-genogroup recombination. Together, our data revealed a new profile of PEDV in Guangxi, China, which enhances our understanding of the distribution, genetic characteristics and evolutionary profile of the circulating PEDV strains in China.

14.
J Virol Methods ; 316: 114711, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921673

RESUMO

The mechanism of discontinuous transcription for the synthesis of a series of sub-genomic mRNAs to express the structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) potentially allows for the simultaneous expression of multiple foreign genes. This can occur by insertion of multiple novel independent transcription units between the ORF sequences of the PRRSV genome. Here, an expression cassette consisting of a red fluorescent protein (RFP) gene flanked at its 3' end by transcription-regulating sequences (TRS) and an expression cassette consisting of an iLOV gene flanked at its 5' end by TRS, was constructed. The resulting expression cassette containing a RFP and an iLOV gene were introduced between ORF1b and 2 as well as ORF7 and 3'UTR, respectively, in an infectious PRRSV cDNA clone. Transfection of the resulting clone (pGX-12RFP-73iLOV) into cells resulted in the recovery of a recombinant virus (rGX-12RFP-73iLOV). Simultaneous expression of RFP and iLOV was observed in MARC-145 cells infected with rGX-RFP-iLOV. To test the ability of the PRRSV genome to express all three reporter genes simultaneously, an expression cassette containing the Gluc gene and one containing the iLOV gene were also inserted in between ORF1b and 2 as well as ORF7 and 3'UTR, respectively. This was performed in a recently obtained infectious PRRSV cDNA clone carrying a RFP gene in nsp2. Transfection of the construct (pGX-R-Gluc-iLOV) carrying the three reporter genes into cells allowed the rescue of the recombinant reporter virus (rGX-R-Gluc-iLOV) which showed similar growth characteristics to the parental virus but yielded 100-fold less infectious viruses. Fluorescence microscopy of cells infected with rGX-R-Gluc-iLOV demonstrated the presence of both RFP and iLOV genes. Gluc activities in supernatants harvested at different time points from cells infected with recombinant viruses carrying Gluc showed increased levels of Gluc activity as the infection progressed. This indicated that Gluc gene as well as its activity were acceptable parameters to monitor viral propagation. Our results indicate that it is possible to introduce at least three foreign proteins simultaneously in a PRRSV-based vector and such studies will prove invaluable in our future understanding of these viruses.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Suínos , Animais , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , DNA Complementar/genética , Regiões 3' não Traduzidas , Células Clonais , Transfecção , Replicação Viral/genética
15.
Vet Microbiol ; 280: 109675, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36812864

RESUMO

Porcine astrovirus (PAstV) is a common cause of diarrhea in swine farms. The current understanding of the molecular virology and pathogenesis of PAstV is incomplete, especially due to the limited functional tools available. Here, ten sites in the open reading frame 1b (ORF1b) of the PAstV genome were determined to tolerate random 15 nt insertions based on the infectious full-length cDNA clones of PAstV using transposon-based insertion-mediated mutagenesis of three selected regions of the PAstV genome. Insertion of the commonly used Flag tag into seven of the ten insertion sites allowed the production of infectious viruses and allowed their recognition by specifically labeled monoclonal antibodies. Indirect immunofluorescence showed that the Flag-tagged ORF1b protein partially overlapped with the coat protein within the cytoplasm. An improved light-oxygen-voltage (iLOV) gene was also introduced into these seven sites, and only one viable recombinant virus that expressed the iLOV reporter gene at the B2 site was recovered. Biological analysis of the reporter viruses showed that these exhibited similar growth characteristics to the parental virus, but they produced fewer infectious virus particles and replicated at a slower rate. The recombinant viruses containing iLOV fused to ORF1b protein, which maintained their stability and displayed green fluorescence for up to three generations after passaging in cell culture. The porcine astroviruses (PAstVs) expressing iLOV were then used to assess the in vitro antiviral activities of mefloquine hydrochloride and ribavirin. Altogether, the recombinant PAstVs expressing iLOV can be used as a reporter virus tool for the screening of anti-PAstV drugs as well as the investigation of PAstV replication and the functional activities of proteins in living cells.


Assuntos
Infecções por Astroviridae , Mamastrovirus , Doenças dos Suínos , Suínos , Animais , Infecções por Astroviridae/veterinária , Fases de Leitura Aberta/genética , Mamastrovirus/genética , Proteínas
16.
Vet Microbiol ; 280: 109703, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36842367

RESUMO

Pseudorabies virus (PRV), the causative agent of Aujeszky's disease, has gained increased attention in China in recent years due to outbreaks of emergent pseudorabies. However, there is limited information about the evolution and pathogenicity of emergent PRV field strains in China. In this study, two PRV field strains were isolated from an intensive pig farm with suspected PRV infection. These were named the GXLB-2015 and GXGG-2016 strains and their growth characteristics together with their genome sequences and pathogenicity were determined. Nucleotide homology and phylogenetic analysis revealed the GXLB-2015 stain was relatively close to the foreign PRV isolated strains with respect to the whole genome sequence. However, it formed an independent branch between the foreign PRV isolates and the previous PRV variants isolated in China. Further recombination and genetic evolution analysis showed that the GXLB-2015 strain was a natural recombinant between the Bartha strain and PRV variants. The GXGG-2016 strain was highly homologous with the Chinese classical strains, but it has a natural deletion of 69 aa in the thymidine kinase (TK) gene. Pathogenicity analysis showed that, the GXLB-2015 strain had the strongest pathogenicity to mice with an LD50 of 103.5, while the GXGG-2016 strain with the TK gene deletion was not pathogenic to mice. Taken together, our data provide direct evidence for the genomic recombination and natural TK gene deletion of PRVs, which may provide a reference for a better understanding of PRV evolution in China and contribute to the clinical control of PRV infection in pig farms.


Assuntos
Herpesvirus Suídeo 1 , Pseudorraiva , Doenças dos Suínos , Suínos , Animais , Camundongos , Filogenia , Pseudorraiva/epidemiologia , China/epidemiologia , Recombinação Genética , Vacinas contra Pseudorraiva
17.
Vet Microbiol ; 276: 109615, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481481

RESUMO

H1N1 reassortants between the swine Eurasian avian-like (EA) and H1N1 2009 pandemic (H1N1 pdm/09) viruses have been circulating stably in pig populations for more than ten years, and they may have contributed to increased human infections. Whether these H1N1 viruses acquire adaptive mutations to increase their pathogenicity towards a new host is unknown. To address this problem, mouse-adapted (MA) variants of swine-origin EA H1N1 influenza virus isolated from dogs (A/canine/Guangxi/LZ57/2015[LZ57-MA]) were generated by serial lung-to-lung passages in BALB/c mice. These exhibited greater virulence and replication capability than the wild-type virus (LZ57-WT). Of the six adaptive mutations, two were mapped to the ribonucleoprotein (RNP) complex (PB2-E578D and PA-T97I), two to hemagglutinin (HA-N198D and HA-A227E) and two to the non-structural protein 1 (NS1) and nuclear export protein (NS1-A53D and NEP-R42K, respectively). Reverse genetic substitution of the viral genes and mutation experiments demonstrated that the mutations in PA-T97I could enhance the polymerase activity, but a significant downregulation of activity was seen with PB2-E578D, which was consistent with a decrease in virulence. However, HA and NS, which are genes that act synergistically, were found to be determinants of virulence in mice. The reassortant viruses bearing HA mutations (N198D and A227E) were acquired during adaptation enhanced early-stage viral replication in mammalian cells. The single-point mutations in the NS genes had limited effects on virulence. Furthermore, a combination of HA (N198D and A227E) with NS(A53D) in the rLZ57-WT backbone resulted in efficient replication and a significant increase in virulence. The results suggest that these substitutions could compensate for the polymerase function and contribute to enhanced virulence, which highlights a major role for mutations in the HA and NS genes.


Assuntos
Doenças do Cão , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Infecções por Orthomyxoviridae , Doenças dos Suínos , Animais , Cães , Suínos , Humanos , Camundongos , Virulência/genética , Vírus da Influenza A Subtipo H1N1/genética , China , Mutação , Infecções por Orthomyxoviridae/veterinária , Replicação Viral/genética , Camundongos Endogâmicos BALB C , Mamíferos
18.
Viruses ; 14(8)2022 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-36016319

RESUMO

Since its recent appearance in China, the NADC30-like strains of porcine reproductive and respiratory syndrome virus 2 (PRRSV-2) have caused an expanding epidemic, and this has further expanded the genetic diversity of PRRSV. In this study, three NADC30-like strains-GXFCG20210401, GXQZ20210403 and GXNN20210506-were isolated from pig serum samples obtained in Guangxi, and their genomes were sequenced. A comparative analysis of the whole genomes showed that the three strains were most similar to NADC30 (88.3-88.7%). In particular, the non-structural protein coding regions (nsp1, nsp4-5, nsp7-8 and nsp9) showed the highest similarities to JXA1, and the ORF2a-ORF5 regions showed the highest similarities to NADC34. The three strains had same discontinuous deletions of 111+1+19 amino acids in the nsp2 region, which were similar to the NADC30-like strains. Phylogenetic tree analysis based on the ORF5 gene showed that the three PRRSV isolates were divided into lineage 1.5 along with the representative NADC34-like strains, but they were classified as NADC30-like strains with respect to the whole genome and nsp2 evolutionary trees. Recombinant analysis revealed complex recombination patterns in the genomes of the three strains, which likely originated from multiple recombination events among JXA1-like, NADC30-like and NADC34-like strains. The results from animal experiments showed that the GXQZ20210403 strain was 20% lethal to piglets and caused more severe clinical reactions than GXFCG20210401, and both recombinant strains were similar in terms of pathogenicity to the previously reported NADC34 strains. This study demonstrates that NADC34-like strains of PRRSV have been circulating in the southern provinces of China and have exchanged genomes with several other indigenous strains. In addition, differences in recombination patterns may cause different clinical pathogenicity and indicate the importance of the surveillance and preventive control of recombinant strains.


Assuntos
Orthopoxvirus , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , China/epidemiologia , Variação Genética , Genoma Viral , Filogenia , Síndrome Respiratória e Reprodutiva Suína/epidemiologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Recombinação Genética , Suínos
19.
Front Vet Sci ; 9: 851743, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35498751

RESUMO

In recent years, hunniviruses have been reported in a variety of animal species from many countries. Here, hunnivirus was detected in fecal samples from water buffaloes and named as BufHuV-GX-2106. The samples were inoculated into cultures of MDBK cells supplemented with TPCK trypsin and the BufHuV-GX-2106 strain was stably passaged and replicated. Electron microscopic analysis showed the BufHuV-GX-2106 virus particles were spherical and 20~30 nm in diameter. The complete genome of a plaque purified sample of BufHuV-GX-2106 was determined and analyzed. Genomic analysis revealed that the whole sequence of BufHuV-GX-2106 was ~7,601 nucleotides (nt) in length and consisted of a large open reading frame of 6,759nt, a 5'UTR, a 3'UTR and a poly(A) tail. The complete genome sequence of BufHuV-GX-2106 shares 68-85% nucleotide identities with other known hunnivirus strains, indicating high genetic heterogeneity among these viruses. Phylogenetic analysis showed that BufHuV-GX-2106 belonged to the Hunnivirus A species and was more closely related to ovine hunnivirus than other known viruses of this type. This study describes the first isolation and complete genome sequence of a hunnivirus strain from water buffaloes. In addition, this study will help to understand the mechanisms involved in the pathogenesis of Hunnivirus A among different animal species.

20.
Virol Sin ; 37(3): 348-357, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35288349

RESUMO

Getah virus (GETV) is a mosquito-borne virus of the genus Alphavirus in the family Togaviridae and, in recent years, it has caused several outbreaks in animals. The molecular basis for GETV pathogenicity is not well understood. Therefore, a reverse genetic system of GETV is needed to produce genetically modified viruses for the study of the viral replication and its pathogenic mechanism. Here, we generated a CMV-driven infectious cDNA clone based on a previously isolated GETV strain, GX201808 (pGETV-GX). Transfection of pGETV-GX into BHK-21 â€‹cells resulted in the recovery of a recombinant virus (rGETV-GX) which showed similar growth characteristics to its parental virus. Then three-day-old mice were experimentally infected with either the parental or recombinant virus. The recombinant virus showed milder pathogenicity than the parental virus in the mice. Based on the established CMV-driven cDNA clone, subgenomic promoter and two restriction enzyme sites (BamHI and EcoRI) were introduced into the region between E1 protein and 3'UTR. Then the green fluorescent protein (GFP), red fluorescent protein (RFP) and improved light-oxygen-voltage (iLOV) genes were inserted into the restriction enzyme sites. Transfection of the constructs carrying the reporter genes into BHK-21 â€‹cells proved the rescue of the recombinant reporter viruses. Taken together, the establishment of a reverse genetic system for GETV provides a valuable tool for the study of the virus life cycle, and to aid the development of genetically engineered GETVs as vectors for foreign gene expression.


Assuntos
Alphavirus , Doenças Transmissíveis , Infecções por Citomegalovirus , Alphavirus/genética , Animais , Células Clonais , DNA Complementar/genética , Camundongos , Mosquitos Vetores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...